Çukurova Üniversitesi | Yerleşke Haritası | Web Posta
Arama 
Ana Sayfa | English
 
ÇUKUROVA ÜNİVERSİTESİ
ENFORMATİK BÖLÜMÜ
 

 
  Hakkımızda Öğretim Elemanları Dersler Bağlantılar İletişim  
 
  Temel Bilgi Teknolojileri Kullanımı
  Bilgisayarda Veri Analizi ve Raporlama
  ENF 221 - Temel Bilgi Teknolojileri Kullanımı
  CEN 419 - Introduction to Java Programming
  CEN 414 - Java Programming
  CEN 481 - Introduction to Data Mining
  CEN 421 - System Analysis and Design
  CEN 446 - Human Computer Interaction
  SHS 232 - Bilgi ve İletişim Teknolojileri

> Dersler  >  CEN 481 - Introduction to Data Mining        

CEN 481 Introduction to Data Mining

Course Lecturer: Dr. H. Esin ÜNAL

The topics that will be covered throughout the semester are listed below:


Chapter 1: Introduction
  1. Why Data Mining?
  2. What Is Data Mining?
  3. What Kinds of Data Can Be Mined?
  4. What Kinds of Patterns Can Be Mined?
  5. Which Technologies Are Used?
Chapter 2: Getting to Know Your Data
  1. Data Objects and Attribute Types
  2. Basic Statistical Descriptions of Data
  3. Measuring Data Similarity and Dissimilarity
Chapter 3: Data Preprocessing
  1. Data Cleaning
  2. Data Integration
  3. Data Reduction
  4. Data Transformation and Data Discretization
Chapter 6: Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods
  1. Basic Concepts
  2. Frequent Itemset Mining Methods
  3. Which Patterns Are Interesting?—Pattern Evaluation Methods
Chapter 8: Classification: Basic Concepts and Methods
  1. Decision Tree Induction
  2. Bayes Classification Methods
  3. Rule-Based Classification
  4. Model Evaluation and Selection
Chapter 10: Cluster Analysis: Basic Concepts and Methods
  1. Cluster Analysis
  2. Partitioning Methods
  3. Hierarchical Methods
  4. Density-Based Methods
  5. Grid-Based Methods
Chapter 12: Outlier Detection
  1. Outliers and Outlier Analysis
  2. Outlier Detection Methods
Chapter 13: Data Mining Trends and Research Frontiers


The textbooks of the course:
  1. "Data Mining: Concepts and Techniques", by Jiawei Han, Micheline Kamber and Jian Pei (3rd edition).
  2. "Introduction to Data Mining" by Pang-Ning Tan, Michael Steinbach and Vipin Kumar.
  3. "Data Mining – Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank and Mark A. Hall.

Weekly lecture slides:
  1. Week 1
  2. Week 2
  3. Week 3
  4. Week 4
  5. Week 5
  6. Week 6
  7. There is no lecture on 28.10.2019 (Holiday)
  8. MID-TERM EXAM (4.11.2019 - 13:15)
  9. Week 9
  10. Week 10
  11. Week 11
  12. Week 12
  13. Week 13-14-15 (Presentations on Data Mining Trends and Research Frontiers)


Çukurova Üniversitesi Enformatik Bölümü
 Ziyaretçi sayısı: 3754